ELECTRICAL ENGINEERING (EE)

Courses

EE 209. Transmission Line Analysis. 3 Credits.
Fourier-Laplace transform analysis of steady-state and transient phenomena on transmission lines. Phasor representation and complex variable analysis. Prerequisite: MATH 271.

EE 210. Control Systems. 3 Credits.
Analysis and design of continuous and discrete-time control systems; stability, signal flow, performance criteria, classical and state variable methods, simulation design tools, computer-based realizations. Prerequisite: EE 171 or ME 111. Cross-listed with: ME 210.

EE 212. Computer Vision. 3 Credits.
Introduction to computer vision systems for interactive and industrial applications using both hard/software computational approaches. Pre/co-requisites: CS 110; MATH 122 (preferred) or MATH 124 or MATH 271.

EE 215. Electric Energy Systems Analysis. 3 Credits.
Transmission line, generator, transformer modeling and control, per-unit conversion, power flow calculations and software, symmetric components and fault analysis, protection/relaying, stability analysis, smart grid. Prerequisite: EE 113. Co-requisite: MATH 122 (preferred) or MATH 124.

EE 217. Smart Grid. 3 Credits.
Smart Grid: Using information/communication technology to modernize electric power/energy systems, including generation, transmission, distribution and consumption. Electricity physics/economics/policy; renewable energy; energy storage; demand response; energy efficiency; distributed generation; advanced metering infrastructure; distribution automation; microgrids; synchrophasors; HVDC and FACTS systems. Prerequisite: EE 113. Co-requisite: MATH 122 (preferred) or MATH 124.

EE 221. Principles VLSI System Design. 3 Credits.

EE 222. Principles VLSI Analog Circuit Design. 0 or 3 Credits.
The design, layout, and simulation of VLSI analog circuits. Emphasis on small signal models and circuits used in operational amplifiers. Prerequisites: EE 163, EE 121, Instructor permission.

EE 227. Biomedical Measurements Instrumentation & Systems. 3 Credits.
Biomedical and clinical engineering in research, industry, and health care institutions. Measurement techniques and instrumentation. Integrated biomedical monitoring, diagnostic, and therapeutic systems. Co-requisites: EE 121, ANPS 020; Instructor permission. Alternate years.

EE 228. Sensors. 3 Credits.
Sensor design, interrogation, and implementation. A wide variety of electrical, electronic, optical, mechanic, and cross-disciplinary devices. System designs, measurement techniques, and methodologies. Prerequisite: Senior standing in Engineering or Physics.

EE 231. Digital Computer Design I. 3 Credits.
Hardware organization and realization, hard-wired and microprogrammed control units, interrupt and I/O systems. Hardware design language introduced and used for computer design. Prerequisites: EE 131, either EE 134 or CS 101.

EE 232. Digital Computer Design II. 3 Credits.
Memory designs, error control, high-speed addition, multiplication, and division, floating-point arithmetic, cpu enhancements, testing and design for testability. Prerequisite: EE 231.

EE 233. Microprocessor Systems & Applications. 0 or 4 Credits.
Basic principles of mini/microcomputers; A/D; D/A; channels, magnetic devices, display devices, mechanical devices; interface designs of analog systems to mini/microcomputers; principles of microprogramming; bit-slice-based microcomputers. Prerequisite: Department permission; CS 101 desirable.

EE 241. Electromagnetic Wave Theory. 3 Credits.
Electromagnetic radiation and wave propagation in complex media and systems: angular spectrum of plane waves, dispersive pulse propagation, applications to communications, imaging and remote sensing. Prerequisite: EE 141 or equivalent.

EE 245. Quantum Electronics. 3 Credits.
A theoretical description of light-matter interactions in photon emitting resonant cavities. A practical understanding of laser design and operation. Prerequisite: EE 141.

EE 247. Physical Optics. 3 Credits.

EE 261. Semiconductor Materials/Device. 3 Credits.
Energy band theory, effective mass, band structure and electronic properties of semiconductors. Transport of electrons and holes in bulk materials and across interfaces. MOSFETS, BJTs, pn junctions, and Schottky barriers. Prerequisite: EE 163.

EE 262. Solid-State Materials and Devices. 3 Credits.
EE 266. Science & Tech Integrated Cir. 3 Credits.
Science and technology of integrated circuit fabrication. Interaction of processing with material properties, electrical performance, economy, and manufacturability. Prerequisite: EE 163 or EE 261; Co-requisite: EE 164 or EE 262.

EE 272. Information Theory. 3 Credits.
Introduction to probability concepts of information theory; entropy of probability models; theoretical derivations of channel capacity; coding methods and theorems, sampling theorems. Prerequisite: STAT 143, STAT 151, or STAT 153.

EE 273. Digital Communications. 3 Credits.
Digital modulation/demodulation methods and BER performance; source entropy and channel capacity; optimal detection; convolutional codes and decoding algorithms. Pre/co-requisites: EE 174 and STAT 151.

EE 275. Digital Signal Processing. 3 Credits.
Sampling and reconstruction of signals. DFT, FFT and the z-transform. FIR and IIR filter design. Speech coding. Accompanying lab: EE 289. Pre/co-requisites: EE 171; Instructor permission.

EE 276. Image Processing & Coding. 3 Credits.
Image enhancement techniques by point and spatial operations. Data compression techniques to include scalar quantization, entropy coding, transform and sub-band coding. Labs on PC hardware; PC and Unix-based software. Prerequisite: EE 275.

EE 277. Image Anal & Pattern Recognition. 3 Credits.

EE 278. Wireless Communication. 3 Credits.
Modern wireless systems, including cellular design, propagation modeling, multiple access and equalization techniques. Pre/co-requisites: EE 174, STAT 151.

EE 279. Wireless Sensor Networks. 3 Credits.
Applications of and technologies behind wireless sensor networks. A systems-level perspective that integrates wireless networking, antennas, radio frequency circuitry, sensors, digital signal processing, embedded systems, and energy. Term project. Prerequisite: EE 174 or Instructor permission.

EE 281. Materials Science Seminar. 1 Credit.
Presentation and discussion of advanced electrical engineering problems and current developments. Prerequisite: Senior or Graduate Engineering enrollment.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.
EE 366. Solid State & Semicond Thry. 3 Credits.

EE 371. Estimation Theory. 3 Credits.
Foundations of linear and nonlinear least squares estimation, smoothing and prediction, computational aspects, Kalman filtering, nonlinear filtering, parameter identification, and adaptive filtering. Applications to students' research. Pre/co-requisite: STAT 151.

EE 373. Adv Topics in Communications. 3 Credits.
Advanced topics of current interest in communication systems. Topics may include channel coding/decoding, software radio, ad-hoc networks, wireless systems, etc. Prerequisite: EE 273 or Instructor permission.

EE 391. Master's Thesis Research. 1-18 Credits.

EE 392. Master's Project. 1-3 Credits.
Master's Project.

EE 395. Advanced Special Topics. 1-6 Credits.
Advanced topics of current interest in electrical engineering. Prerequisite: Instructor permission.

EE 491. Doctoral Dissertation Research. 1-18 Credits.