ELECTRICAL AND BIOMEDICAL ENGINEERING

The Department of Electrical & Biomedical Engineering offers an ABET-accredited Bachelor of Science in Electrical Engineering. The Bachelor of Science in Biomedical Engineering began in the Fall of 2016 with a curriculum that adheres to ABET guidelines. ABET accreditation for the BS in Biomedical Engineering may only be pursued after the first students graduate from the program in May of 2019. Additional information on the EE and BME degrees is available in the individual program sections of this catalogue.

REGULATIONS

Students pursuing the Bachelor of Science in Electrical Engineering and the Bachelor of Science in Biomedical Engineering are subject to the Academic Standards in CEMS outlined in this catalogue.

ADDITIONAL REGULATIONS

Students may apply no more than three credits graded D, D+ or D- in any engineering (BME, CE, EE, ENGR or ME) course toward the degree.

MAJORS

ELECTRICAL AND BIOMEDICAL ENGINEERING MAJORS

Biomedical Engineering B.S.BME.

Electrical Engineering B.S.EE.

MINORS

ELECTRICAL AND BIOMEDICAL ENGINEERING MINOR

Electrical Engineering Minor

GRADUATE

See the online Graduate Catalogue for more information.

Biomedical Engineering Courses

BME 001. Intro to Biomedical Eng Design. 0 or 2 Credits.
Introduction to the biomedical engineering profession. Hands-on experiences that emphasize interdisciplinary teamwork, technical communications, and project design methodologies. Co-requisite: ENGR 002.

BME 081. Biomedical Eng Lab I. 0 or 2 Credits.
Laboratory experiments pertaining to biomedical instrumentation and biomechanics. Computer-based modeling of biological networks.

BME 090. Internship. 1-3 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

BME 096. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 151. Fall BME Workshop. 0 or 1 Credits.
Seminars, lab tours and hands-on experiences to provide biomedical context to concurrently taken engineering courses. Case studies related to design and ethics. Team based project.

BME 152. Spring BME Workshop. 0 or 1 Credits.
Seminars, lab tours and hands-on experiences to provide biomedical context to concurrently taken engineering courses. Engineering design process. Researching and defining Capstone Design projects. Prerequisite: BME 151.

BME 181. Biomedical Eng Lab II. 0 or 2 Credits.
Laboratory experiments including those related to biomedical sensing and instrumentation, biomechanics, tissue engineering, and/or computer-based modeling of biological networks. Prerequisite: BME 081.

BME 187. Capstone Design I. 3 Credits.
Project management, professional ethics, social/ economic impact, and contemporary issues that arise in engineering practice. Interdisciplinary project development including project selection, design requirements, prototyping, and communications. Pre/Co-requisite: Senior standing.

BME 188. Capstone Design II. 3 Credits.

BME 190. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

BME 192. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 196. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 197. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory-level course in the discipline, for which credit is awarded. Offered at department discretion.

BME 198. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.
BME 199. Cooperative Ed Experience. 12 Credits.
On-site, full-time, supervised work experience in biomedical engineering or related field appropriate for sophomore or junior levels that also satisfies the overall educational objectives defined by the CEMS Engineering Co-op Program. Prerequisite: Sophomore or Junior; Biomedical Engineering major.

BME 290. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

BME 292. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 296. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 297. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory-level course in the discipline, for which credit is awarded. Offered at department discretion.

BME 298. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

Electrical Engineering Courses

EE 001. EE Principles and Design. 1-3 Credits.
Hands-on introduction to contemporary electrical engineering principles/practice. Basic analog and digital circuit design, construction, operation, measurement. Interfacing sensors and actuators to a microcontroller, programming to interact with the world. Design project. No credit for both EE 001 and CEMS 085.

EE 003. Linear Circuit Analysis I. 3 Credits.

EE 004. Linear Circuit Analysis II. 0 or 3 Credits.
Sinusoids and phasors. Sinusoidal steady-state response and power. Complex frequency and network functions. Resonance. Laplace transform techniques. Prerequisites: EE 003 or EE 100; PHYS 125 or PHYS 152.

EE 075. Electrical Circuits & Sensors. 0 or 4 Credits.
Fundamentals of electrical circuits with applications to the use of sensors. DC and AC circuits. Sensors utilized for civil engineering and environmental engineering applications. Demonstrations and hands-on exercises. Prerequisites: MATH 022; CS 020 or CS 021.

EE 081. Linear Circuits Laboratory I. 0 or 2 Credits.
Electrical instruments; oscilloscope measurements; resistive, capacitive, and inductive components; applications of operational amplifiers; digital-to-analog converters; transient response of RL and RC circuits. Co-requisites: EE 003, PHYS 125.

EE 082. Linear Circuits Laboratory II. 0 or 2 Credits.
Transients in RLC circuits; steady state sinusoidal response in RLC circuits; real and reactive power in RLC circuits; operational amplifier active filters. Prerequisites: EE 081 or EE 100; PHYS 125 or PHYS 152. Co-requisite: EE 004.

EE 090. Internship. 1-3 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

EE 095. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles. Prerequisite: Department permission.

EE 100. Electrical Engr Concepts. 0 or 4 Credits.
Fundamentals of electrical engineering; DC and AC linear circuit analysis; laboratory component. No credit for Electrical Engineering majors. Co-requisite: PHYS 125 or BME 041.

EE 101. Digital Control w/Embedded Sys. 0 or 4 Credits.
Applications of single-chip microcontrollers as embedded systems for data acquisition/real time control. C language; parallel and serial ports; timers; counters; A/D and D/A. Simple sensors and actuators. Laboratory. Prerequisites: EE 100; CS 020 or CS 021.

EE 106. Embedded Programming in C. 1-3 Credits.
Fundamental exercises in C programming for embedded systems (e.g., Arduino platform) including variable types, pointers, memory allocation, input/output, etc. (1st cr.); demonstration of advanced knowledge of these embedded systems concepts (2nd cr.); embedded systems project (3rd cr.). Prerequisites: CS 020 or CS 021. Cross-listed with: CS 106.

EE 110. Control Systems. 0 or 4 Credits.
Analysis and design of continuous and discrete-time control systems; stability, signal flow, performance criteria, classical and state variable methods. Laboratory experiments. Credit not given for more than one of the courses EE 110, EE 210. Prerequisite: EE 171 or ME 111.

EE 113. SU: Electric Energy Systems. 0-4 Credits.
Energy sources, including renewables; generation, delivery, consumption of electricity; power plants, emissions, policy; three-phase power, transformers, motors/generators; sustainability and electric energy. Laboratory included. Prerequisite: EE 003 or EE 100.

EE 120. Electronics I. 4 Credits.
Physical principles of operation of common semiconductor devices. Analog and digital circuits using diodes and transistors. Electronic circuit analysis and simulation. Prerequisite: EE 004.
EE 121. Electronics II. 4 Credits.
Physical principles of operation of common semiconductor devices. Analog and digital circuits using MOS and bipolar junction transistors. Electronic circuit analysis and simulation. Prerequisite: EE 120.

EE 131. Fundamentals of Digital Design. 3 Credits.
Combinational logic simplification and design, MSI and PLD components, synchronous and asynchronous sequential design, algorithmic state machines, registers, counters, memory units, introduction to hardware design languages. Prerequisite: Sophomore standing.

EE 134. Microcontroller Systems. 0 or 4 Credits.
Operation and applications of microcontrollers in embedded digital systems for real-time control and data acquisition. Programming and the design of interfaces. Laboratory experience. Prerequisites: EE 003 or EE 100, CS 020 or CS 021, and CS 031.

EE 141. Electromagnetic Field Theory. 0 or 4 Credits.
Fundamentals of electromagnetic field theory and applications: vector analysis, electric and magnetic fields, potential theory, boundary conditions and boundary value problems, dielectric and magnetic material properties, conductance, capacitance, and inductance, Maxwell-Lorentz theory. Prerequisites: PHYS 125, MATH 271, EE 004.

EE 163. Solid State Phys Electronics I. 4 Credits.
Physical principles required to understand the operation of common semiconductor devices. Physical models of p-n junctions, Schottky barriers, and MOS field-effect transistors. Prerequisites: PHYS 125, MATH 271.

EE 171. Signals & Systems. 0 or 4 Credits.
Discrete and continuous-time signals and systems. Input/output descriptions and analysis. Convolution, Fourier analysis and Laplace transforms, Sampling and z-transforms. Application to electrical engineering design problems. Prerequisite: EE 004 or MATH 271.

EE 174. Communication Systems. 0 or 4 Credits.

EE 183. Electronics Laboratory. 0 or 2 Credits.
Characteristics and applications of semiconductor devices; inverters and logic characterization; linear amplifiers and applications of operational amplifiers in non-linear circuits. Co-requisite: EE 120.

EE 184. Electronics Design Project. 0 or 3 Credits.
Electronics design project. Design, analyze, simulate, build, characterize, and test an electronic circuit that helps to address an engineering application. Prerequisite: EE 183. Co-requisite: EE 121.

EE 187. Capstone Design I. 3 Credits.
Project management, professional ethics, social/economic impact, and contemporary issues that arise in engineering practice. Interdisciplinary project development including project selection, design requirements, prototyping and communications. Pre/co-requisite: Senior standing.

EE 188. Capstone Design II. 0 or 3 Credits.
Cumulative, team-based interdisciplinary design experience. Subsystem design, implementation and test. System integration and test. Project demonstration, report, and presentation. Team-directed lab work. Prerequisite: EE 187.

EE 190. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

EE 192. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

EE 193. College Honors. 3-6 Credits.

EE 194. College Honors. 3-6 Credits.

EE 195. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles. Prerequisite: Department permission.

EE 197. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory-level course in the discipline, for which credit is awarded. Offered at department discretion.

EE 198. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

EE 199. Cooperative Ed Experience. 12 Credits.
On-site, full-time, supervised work experience in electrical engineering or related field appropriate for sophomore or junior levels that also satisfies the overall educational objectives defined by the CEMS Engineering Co-op Program. Prerequisites: Electrical Engineering major; Sophomore or Junior standing.

EE 207. Introductory Bioengineering. 3 Credits.
Introduction to biomedical engineering science including biomechanics, biomaterials, biomedical imaging, rehabilitation engineering, biomedical computing, biomedical instrumentation, and transport phenomena. Pre/co-requisites: Minimum Senior standing in Engineering; Instructor permission. Cross-listed with: ME 207.

EE 209. Transmission Line Analysis. 3 Credits.
Fourier-Laplace transform analysis of steady-state and transient phenomena on transmission lines. Phasor representation and complex variable analysis. Prerequisite: MATH 271.
EE 210. Control Systems. 3 Credits.
Analysis and design of continuous and discrete-time control systems; stability, signal flow, performance criteria, classical and state variable methods, simulation design tools, computer-based realizations. Credit not given for more than one of the courses EE 110, EE 210. Prerequisite: EE 171 or ME 111. Cross-listed with: ME 210.

EE 211. Real-Time Control Systems. 3 Credits.
Digital control systems analysis and design. Techniques for system analysis and controller design, e.g., system identification, linearization, gain scheduling, and control of systems with saturation and time delays. State space models and discretization of continuous-time systems. Prerequisites: EE 110 or EE 210 or ME 210.

EE 212. Computer Vision. 3 Credits.
Introduction to computer vision systems for interactive and industrial applications using both hard/software computational approaches. Pre/co-requisites: CS 110; MATH 122 (preferred) or MATH 124 or MATH 271.

EE 213. Systems & Synthetic Biology. 3 Credits.
Applying engineering tools to the design and analysis of biomolecular processes; gene regulatory networks; nonlinear dynamics in molecular biology; biological circuit design; biological signal processing. Prerequisites: Background required: Differential Equations, Linear Algebra, Programming. Cross-listed with: CSYS 213, ME 213.

EE 215. Electric Energy Systems Analysis. 3 Credits.
Transmission line, generator, transformer modeling and control, per-unit conversion, power flow calculations and software, symmetric components and fault analysis, protection/relaying, stability analysis, smart grid. Prerequisite: EE 113. Co-requisite: MATH 122 (preferred) or MATH 124.

EE 217. Smart Grid. 3 Credits.
Smart Grid: Using information/communication technology to modernize electric power/energy systems, including generation, transmission, distribution and consumption. Electricity physics/economics/policy; renewable energy; energy storage; demand response; energy efficiency; distributed generation; advanced metering infrastructure; distribution automation; microgrids; synchrophasors; HVDC and FACTS systems. Prerequisite: EE 113 or Graduate standing. Co-requisite: EE 215 recommended.

EE 221. Digital VLSI Circuit Design. 0 or 3 Credits.
Design of VLSI circuits using a modular approach with industrial grade software: schematic capture; circuit design languages (HDL); full-custom layouts; mixed signals; synthesis. Laboratory. Prerequisites: EE 121. Pre/co-requisites: EE 131.

EE 222. Analog VLSI Circuit Design. 0 or 3 Credits.
The design, layout, and simulation of VLSI analog circuits. Emphasis on small signal models and circuits used in operational amplifiers. Prerequisites: EE 121; Instructor permission.

EE 224. Principles VLSI System Design. 3 Credits.

EE 227. Biomedical Instrumentation. 3 Credits.
Measurement techniques for biomedical engineering research and industry, and health care institutions. Integrated biomedical monitoring, diagnostic, and therapeutic instrumentation. Prerequisite: EE 100 or EE 004. Co-requisites: EE 121, ANPS 020; Instructor permission. Alternate years.

EE 228. Sensors. 3 Credits.
Sensor design, interrogation, and implementation. A wide variety of electrical, electronic, optical, mechanic, and cross-disciplinary devices. System designs, measurement techniques, and methodologies. Prerequisite: Senior standing in Engineering or Physics.

EE 231. Digital Computer Design I. 3 Credits.
Hardware organization and realization, hard-wired and microprogrammed control units, interrupt and I/O systems. Hardware design language introduced and used for computer design. Prerequisites: EE 131, either EE 134 or CS 101.

EE 232. Digital Computer Design II. 3 Credits.
Memory designs, error control, high-speed addition, multiplication, and division, floating-point arithmetic, CPU enhancements, testing and design for testability. Prerequisite: EE 231.

EE 233. Microprocessor Systems & Appl. 0 or 4 Credits.
Basic principles of mini/microcomputers; A/D; D/A; channels, magnetic devices, display devices, mechanical devices; interface designs of analog systems to mini/microcomputers; principles of microprogramming; bit-slice-based microcomputers. Prerequisite: Department permission; CS 101 desirable.

EE 241. Electromagnetic Wave Theory. 3 Credits.
Electromagnetic radiation and wave propagation in complex media and systems: angular spectrum of plane waves, dispersive pulse propagation, applications to communications, imaging and remote sensing. Prerequisite: EE 141 or equivalent.

EE 245. Quantum Electronics. 3 Credits.
A theoretical description of light-matter interactions in photon emitting resonant cavities. A practical understanding of laser design and operation. Prerequisite: EE 141.

EE 247. Physical Optics. 3 Credits.

EE 261. Semiconductor Materials/Device. 3 Credits.
Energy band theory, effective mass, band structure and electronic properties of semiconductors. Transport of electrons and holes in bulk materials and across interfaces. MOSFETS, BJTs, pn junctions, and Schottky barriers. Prerequisite: EE 163.
EE 262. Solid-State Materials & Devices. 3 Credits.

EE 266. Science & Tech Integrated Cir. 3 Credits.
Science and technology of integrated circuit fabrication. Interaction of processing with material properties, electrical performance, economy, and manufacturability. Prerequisite: EE 163 or EE 261; Co-requisite: EE 164 or EE 262.

EE 272. Information Theory. 3 Credits.
Introduction to probability concepts of information theory; entropy of probability models; theoretical derivations of channel capacity; coding methods and theorems, sampling theorems. Prerequisite: STAT 143, STAT 151, or STAT 153.

EE 273. Digital Communications. 3 Credits.
Digital modulation/demodulation methods and BER performance; source entropy and channel capacity; optimal detection; convolutional codes and decoding algorithms. Pre/co-requisites: EE 174 and STAT 151.

EE 275. Digital Signal Processing. 3 Credits.
Sampling and reconstruction of signals. DFT, FFT and the z-transform. FIR and IIR filter design. Speech coding. Accompanying lab: EE 289. Pre/co-requisites: EE 171; Instructor permission.

EE 276. Image Processing & Coding. 3 Credits.
Image enhancement techniques by point and spatial operations. Data compression techniques to include scalar quantization, entropy coding, transform and sub-band coding. Labs on PC hardware; PC and Unix-based software. Prerequisite: EE 275.

EE 277. Image Analysis & Pattern Recognition. 3 Credits.

EE 278. Wireless Communication. 3 Credits.
Modern wireless systems, including cellular design, propagation modeling, multiple access and equalization techniques. Pre/co-requisites: EE 174, STAT 151.

EE 279. Wireless Sensor Networks. 3 Credits.
Applications of and technologies behind wireless sensor networks. A systems-level perspective that integrates wireless networking, antennas, radio frequency circuitry, sensors, digital signal processing, embedded systems, and energy. Term project. Prerequisite: EE 174 or Instructor permission.

EE 281. Materials Science Seminar. 1 Credit.
Presentation and discussion of advanced electrical engineering problems and current developments. Prerequisite: Senior or Graduate Engineering enrollment.

EE 282. Seminar. 1 Credit.
EE 283. Seminar. 1 Credit.
EE 284. Seminar. 1 Credit.

EE 289. Digital Signal Processing Lab. 1 Credit.

EE 290. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

EE 292. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

EE 295. Special Topics. 1-18 Credits.
Special topics in developing areas of Electrical Engineering. Prerequisite: Senior standing, or Instructor permission.

EE 297. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory-level course in the discipline, for which credit is awarded. Offered at department discretion.

EE 298. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.