BIOMEDICAL ENGINEERING

OVERVIEW
Department website: https://www.uvm.edu/cems

OVERVIEW
Leveraging strong ties between the University of Vermont’s College of Engineering and Mathematical Sciences and the Larner College of Medicine, the new Master of Science in Biomedical Engineering (MSBME) was created to give students the opportunity to develop advanced skills so that they may apply engineering methods to address problems related to human health. Students enrolled in the MS in BME program will have the opportunity to pursue a research-oriented thesis based, project-based or coursework based program.

DEGREES
Biomedical Engineering AMP
Biomedical Engineering M.S.

FACULTY
Bates, Jason H. T.; Professor, Department of Medicine-Pulmonary; DSC, Canterbury University; PHD, University of Otago
Beynnon, Bruce David; Professor, Department of Orthopaedics and Rehabilitation; PHD, University of Vermont
Doiron, Amber; Assistant Professor, Department of Electrical and Biomedical Engineering; PHD, University of Texas at Austin
Fiorentino, Niccolo M.; Assistant Professor, Department of Mechanical Engineering; PHD, University of Virginia
McGinnis, Ryan S.; Assistant Professor, Department of Electrical and Biomedical Engineering; DPHIL, University of Michigan
Oldinski, Rachael Ann; Associate Professor, Department of Mechanical Engineering; PHD, Colorado State University
Spector, Peter Salem; Professor, Department of Medicine-Cardiology; MD, Albert Einstein College of Medicine

Courses
BME 227. Biomedical Instrumentation. 3 Credits.
Measurement techniques for biomedical engineering research and industry, and health care institutions. Integrated biomedical monitoring, diagnostic, and therapeutic instrumentation. Prerequisite: EE 100 or EE 004. Co-requisite: EE 120, ANPS 020, or Instructor permission. Cross-listed with: EE 227.

BME 240. Wearable Sensing. 3 Credits.
Covers current state-of-the-art in wearable sensors and the biomechanical and physiological phenomena they are being used to measure. Emphasis will be given to applications related to human health and medicine. Prerequisite: ME 111 or EE 171 or equivalent with Instructor permission.

BME 241. Biomedical Signal Processing. 3 Credits.
Covers several important physiological signals often monitored in biomedical contexts (e.g. EMG, ECG, PPG). Content will include the physiology that generates the signals as well as the signal processing techniques (e.g., LTI filters, empirical mode and wavelet decomposition) and algorithms used for analysis. Prerequisite: ME 111 or EE 171 or equivalent with Instructor permission.

BME 391. Master’s Thesis Research. 1-18 Credits.
Credit as arranged.

BME 393. Graduate Seminar. 1 Credit.
Presentation and discussion of advanced problems, research, and current topics in Electrical Engineering by faculty, graduate students, and outside guest speakers. Prerequisite: Graduate Student standing.

BME 396. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 496. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.