STATISTICS (STAT)

Courses

STAT 200. QR: Med Biostat&Epidemiology. 3 Credits.

STAT 201. QR:Stat Computing>Data Analys. 3 Credits.
Fundamental data processing, code development, graphing and analysis using statistical software packages, including SAS and R. Analysis of data and interpretation of results. Prerequisite: STAT 141 or STAT 143 or STAT 211; or STAT 111 with Instructor permission.

STAT 211. QR: Statistical Methods I. 3 Credits.
Fundamental concepts for data analysis and experimental design. Descriptive and inferential statistics, including classical and nonparametric methods, regression, correlation, and analysis of variance. Statistical software. Prerequisite: Minimum Junior standing or STAT 141 or STAT 143 and Instructor permission. Cross-listed with: BIOS 211.

STAT 212. QR: Statistical Methods II. 3 Credits.
Multiple regression and correlation. Basic experimental design. Analysis of variance (fixed, random, and mixed models). Analysis of covariance. Computer software usage. Prerequisite: STAT 143 or STAT 211; or STAT 141 and Instructor permission. Cross-listed with: BIOS 221.

STAT 223. QR:Appld Multivariate Analysis. 3 Credits.

STAT 224. QR:Stats for Qualty/Productvt. 3 Credits.
Statistical process control; Shewhart, cusum and other control charts; process capability studies. Total Quality Management. Acceptance, continuous, sequential sampling. Process design and improvement. Case studies. Prerequisite: STAT 141, STAT 143, or STAT 211.

STAT 225. QR:Applied Regression Analysis. 3 Credits.
Simple linear and multiple regression models; least squares estimates, correlation, prediction, forecasting. Problems of multicollinearity and influential data (outliers).

STAT 229. QR:Surviv/Logistic Regression. 3 Credits.

STAT 231. QR: Experimental Design. 3 Credits.
Randomization, complete and incomplete blocks, cross-overs, Latin squares, covariance analysis, factorial experiments, confounding, fractional factorials, nesting, split plots, repeated measures, mixed models, response surface optimization. Prerequisite: BIOS 221 or STAT 221; or BIOS 211 or STAT 211 and STAT 201. Cross-listed with: BIOS 231.

STAT 233. QR: Survey Sampling. 3 Credits.
Design and data analysis for sample surveys. Simple random, stratified, systematic, cluster, multistage sampling. Practical issues in planning and conducting surveys. Prerequisite: STAT 211; or STAT 141 or STAT 143 with Instructor permission.

STAT 235. QR: Categorical Data Analysis. 3 Credits.
Measures of association and inference for categorical and ordinal data in multiway contingency tables. Log linear and logistic regression models. Prerequisite: STAT 211. Cross-listed with: BIOS 235.

STAT 237. QR: Nonparametric Statis Mthd. 3 Credits.
Nonparametric and distribution free methods; categorical, ordinal, and quantitative data; confidence intervals; rank and chi-square hypothesis tests; computer-intensive procedures (bootstrap, exact tests). Prerequisite: STAT 211; or STAT 141 or STAT 143 with Instructor permission.

STAT 241. QR: Statistical Inference. 3 Credits.
Introduction to statistical theory: related probability fundamentals, derivation of statistical principles, and methodology for parameter estimation and hypothesis testing. Prerequisites: STAT 151, STAT 153, or STAT 251, and STAT 141 or equivalent, and MATH 121. Cross-listed with: BIOS 241.

STAT 251. QR: Probability Theory. 3 Credits.
Distributions of random variables and functions of random variables. Expectations, stochastic independence, sampling and limiting distributions (central limit theorems). Concepts of random number generation. Prerequisite: MATH 121; STAT 151 or STAT 153 recommended. Cross-listed with: MATH 207, BIOS 251.

STAT 252. Appl Discr Stochas Proc Models. 1 Credit.
Markov chain models for biological, social, and behavioral systems models. Random walks, transition and steady-state probabilities, passage and recurrence times. Prerequisite: STAT 151, STAT 153, or STAT 251.

STAT 253. QR:Appl Time Series&Forecastng. 3 Credits.
Autoregressive moving average (Box-Jenkins) models, autocorrelation, partial correlation, differencing for nonstationarity, computer modeling. Forecasting, seasonal or cyclic variation, transfer function and intervention analysis, spectral analysis. Prerequisite: STAT 211 or STAT 225; or STAT 141 or STAT 143 with Instructor permission. Cross-listed with: CSYS 253.
STAT 256. QR: Neural Computation. 3 Credits.
Introduction to artificial neural networks, their computational capabilities and limitations, and the algorithms used to train them. Statistical capacity, convergence theorems, backpropagation, reinforcement learning, generalization. Prerequisites: MATH 122 or MATH 124 or MATH 271; STAT 143 or STAT 153 or equivalent; CS 110. Cross-listed with: CS 256, CSYS 256.

STAT 261. QR: Statistical Theory. 3 Credits.
Point and interval estimation, hypothesis testing, and decision theory. Application of general statistical principles to areas such as nonparametric tests, sequential analysis, and linear models. Prerequisite: STAT 251; or STAT 151 or STAT 153 with Instructor permission. Cross-listed with: BIOS 261.

STAT 265. QR: Integrated Product Dev. 3 Credits.
Project-based course focusing on the entire product life cycle. Team dynamics, process and product design, quality, materials, management, and environmentally-conscious manufacturing. Prerequisite: Senior standing. Cross-listed with: BSAD 293, ME 265.

STAT 281. Statistics Practicum. 1-3 Credits.
Intensive experience in carrying out a complete statistical analysis for a research project in substantive area with close consultation with a project investigator. Prerequisite: STAT 200 or STAT 201 or STAT 221 through STAT 237 or STAT 253; some statistical software experience; Instructor permission.

STAT 287. QR: Data Science I. 3 Credits.
Data harvesting, cleaning, and summarizing. Working with non-traditional, non-numeric data (social network, natural language textual data, etc.). Scientific visualization using static and interactive "infographics". A practical focus on real datasets, and developing good habits for rigorous and reproducible computational science. Prerequisites: CS 020 or CS 021; STAT 141 or STAT 143 or STAT 211; CS 110 and MATH 124 recommended. Cross-listed with: CS 287.

STAT 288. QR: Statistical Learning. 3 Credits.
Statistical learning methods and applications to modern problems in science, industry, and society. Topics include: linear model selection, cross-validation, lasso and ridge regression, tree-based methods, bagging and boosting, support vector machines, and unsupervised learning. Prerequisites: STAT 143, STAT 183 or STAT 211. Cross-listed with: CS 288.

STAT 295. Advanced Special Topics. 1-18 Credits.
For advanced students. Lectures, reports, and directed readings on advanced topics. Prerequisite: As listed in schedule of courses.

STAT 321. Seminar in Advanced Statistics. 1 Credit.
Seminar presentations and discussions of statistical literature pertaining to the theoretical aspects of methods studied in STAT 221, STAT 223, STAT 224, STAT 225, and STAT 229, respectively. Corequisites: STAT 221; STAT 241 or STAT 261 recommended.

STAT 323. Seminar in Advanced Statistics. 1 Credit.
Seminar presentations and discussions of statistical literature pertaining to the theoretical aspects of methods studied in STAT 221, STAT 223, STAT 224, STAT 225, and STAT 229, respectively. Co-requisites: STAT 223; STAT 241 or STAT 261 recommended.

STAT 324. Seminar in Advanced Statistics. 1 Credit.
Seminar presentations and discussions of statistical literature pertaining to the theoretical aspects of methods studied in STAT 221, STAT 223, STAT 224, STAT 225, and STAT 229, respectively Co-requisites: STAT 224; STAT 241 or STAT 261 recommended.

STAT 325. Seminar in Advanced Statistics. 1 Credit.
Seminar presentations and discussions of statistical literature pertaining to the theoretical aspects of methods studied in STAT 221, STAT 223, STAT 224, STAT 225, and STAT 229, respectively. Co-requisites: STAT 225 or STAT 221; STAT 241 or STAT 261 recommended.

STAT 329. Seminar in Advanced Statistics. 1 Credit.
Seminar presentations and discussions of statistical literature pertaining to the theoretical aspects of methods studied in STAT 221, STAT 223, STAT 224, STAT 225, and STAT 229, respectively. Co-requisite: STAT 229; STAT 241 or STAT 261 recommended.

STAT 330. Bayesian Statistics. 3 Credits.

STAT 355. Statistical Pattern Recognition. 3 Credits.
Analysis of algorithms used for feature selection, density estimation, and pattern classification, including Bayes classifiers, maximum likelihood, nearest neighbors, kernels, discriminants, neural networks and clustering. Prerequisite: STAT 241 or STAT 251, or Instructor permission. Cross-listed with: CS 355, CSYS 355.

STAT 360. Linear Models. 3 Credits.
Theory of linear models, least squares and maximum likelihood estimation, fixed, random and mixed models, variance component estimation, introduction to generalized linear models, bootstrapping. Prerequisites: STAT 261 and knowledge of matrix algebra or Instructor permission.

STAT 369. Applied Geostatistics. 3 Credits.
Introduction to the theory of regionalized variables, geostatistics (kriging techniques): special topics in multivariate analysis; Applications to real data subject to spatial variation are emphasized. Prerequisites: STAT 223 or STAT 225; CS 020 or CS 021; or Instructor permission. Cross-listed with: CE 369, CSYS 369.

STAT 380. Sem:Statistics & Biostatistics. 0.5-1 Credits.
Presentation and discussion of current topics, methodological research and applications in Statistics and Biostatistics by graduate students, faculty and guest speakers. Prerequisite: Instructor Permission.
STAT 381. Statistical Research. 1-3 Credits.
Methodologic or data analytic research culminating in oral and written reports to the faculty. Prerequisite: Instructor permission.

STAT 385. Consulting Practicum. 1-3 Credits.
Supervised field work in statistical consulting. Experiences may include advising UVM faculty and students or clients in applied settings such as industry and government agencies. Prerequisites: Second year Graduate standing in Statistics or Biostatistics and permission of Statistics Program Director.

STAT 387. Data Science II. 3 Credits.
Advanced data analysis, collection, and filtering. Statistical modeling, monte carlo statistical methods, and in particular Bayesian data analysis, including necessary probabilistic background material. A practical focus on real datasets and developing good habits for rigorous and reproducible computational science. Prerequisite: STAT 287 or CS 287 or Instructor permission. Cross-listed with: CS 387.

STAT 391. Master’s Thesis Research. 1-6 Credits.

STAT 395. Advanced Special Topics. 1-18 Credits.
Lectures or directed readings on advanced and contemporary topics not presently included in other statistics courses. Prerequisites: As listed in schedule of courses.