THE UNIVERSITY OF VERMONT

ELECTRICAL ENGINEERING

http://www.uvm.edu/~cems/soe/

OVERVIEW

The Electrical Engineering program at the University of Vermont (UVM) offers programs of study leading to the M.S. and Ph.D. degrees in Electrical Engineering. In addition, the EE program partners with other academic units to offer M.S. and Ph.D. degrees in materials science and the Ph.D. degree in bioengineering. Areas of research expertise in electrical engineering include digital signal processing, control systems, electromagnetics and optics, electric energy systems, solid-state physical electronics, semiconductor materials and devices, wireless communications, VLSI design and testing, and biomedical engineering.

DEGREES

- Electrical Engineering AMP (http://catalogue.uvm.edu/graduate/electricalengineering/electricalengineeringamp/)
- Electrical Engineering M.S. (http://catalogue.uvm.edu/graduate/electricalengineering/electricalengineeringms/)
- Electrical Engineering Ph.D. (http://catalogue.uvm.edu/graduate/electricalengineering/electricalengineeringphd/)

FACULTY

Almassalkhi, Mads; Assistant Professor, Department of Electrical and Biomedical Engineering; PHD, University of Michigan Ann Arbor
Duffaut Espinosa, Luis; Research Assistant Professor, Department of Electrical and Biomedical Engineering; PHD, Old Dominion University
Frolik, Jeff L.; Professor, Department of Electrical and Biomedical Engineering; PHD, University of Michigan Ann Arbor
Hines, Paul D.; Associate Professor, Department of Electrical and Biomedical Engineering; PHD, Carnegie Mellon University
McGinnis, Ryan; Assistant Professor, Department of Electrical and Biomedical Engineering; DPHIL, University of Michigan
Ossareh, Hamid-Reza; Assistant Professor, Department of Electrical and Biomedical Engineering, PHD, University of Michigan Ann Arbor
Xia, Tian; Professor, Department of Electrical and Biomedical Engineering; PHD, University of Rhode Island

Courses

EE 209. Transmission Line Analysis. 3 Credits.
Fourier-Laplace transform analysis of steady-state and transient phenomena on transmission lines. Phasor representation and complex variable analysis. Prerequisite: MATH 271.

EE 210. Control Systems. 3 Credits.
Analysis and design of continuous and discrete-time control systems; stability, signal flow, performance criteria, classical and state variable methods, simulation design tools, computer-based realizations. Credit not given for more than one of the courses EE 110, EE 210. Prerequisite: EE 171 or ME 111. Cross-listed with: ME 210.

EE 211. Real-Time Control Systems. 3 Credits.
Digital control systems analysis and design. Topics include: difference equations, the Z-transforms, discrete-time transfer functions, state-space models, sampled-data systems, discretization, and optimal control. Project-based final. Prerequisites: EE 110 or EE 210 or ME 210.

EE 215. Electric Energy Systems Analysis. 3 Credits.
Transmission line, generator, transformer modeling and control, per-unit conversion, power flow calculations and software, symmetric components and fault analysis, protection/relaying, stability analysis, smart grid. Prerequisite: EE 113. Co-requisite: MATH 122 (preferred) or MATH 124.

EE 217. Smart Grid. 3 Credits.
Smart Grid: Using information/communication technology to modernize electric power/energy systems, including generation, transmission, distribution and consumption. Electricity physics/economics/policy; renewable energy; energy storage; demand response; energy efficiency; distributed generation; advanced metering infrastructure; distribution automation; microgrids; synchrophasors; HVDC and FACTS systems. Prerequisite: EE 113 or Graduate standing. Co-requisite: EE 215 recommended.

EE 221. Digital VLSI Circuit Design. 0 or 3 Credits.
Design of VLSI circuits using a modular approach with industrial grade software: schematic capture; circuit design languages (HDL); full-custom layouts; mixed signals; synthesis. Laboratory. Prerequisites: EE 120. Pre/co-requisites: EE 131.

EE 227. Biomedical Instrumentation. 3 Credits.
Measurement techniques for biomedical engineering research and industry, and health care institutions. Integrated biomedical monitoring, diagnostic, and therapeutic instrumentation. Prerequisite: EE 100 or EE 004. Co-requisites: EE 120, ANPS 020, or Instructor permission. Cross-listed with: BME 227.

EE 228. Sensors. 3 Credits.
Sensor design, interrogation, and implementation. A wide variety of electrical, electronic, optical, mechanic, and cross-disciplinary devices. System designs, measurement techniques, and methodologies. Interface electronics, system grounding and shielding methods. Prerequisite: EE 101 or EE 120.

EE 231. Digital Computer Design I. 3 Credits.
Hardware organization and realization, hard-wired and microprogrammed control units, interrupt and I/O systems. Hardware design language introduced and used for computer design. Prerequisites: EE 131; EE 134 or CS 121.
EE 232. Digital Computer Design II. 3 Credits.
Memory designs, error control, high-speed addition, multiplication, and division, floating-point arithmetic, CPU enhancements, testing and design for testability. Prerequisite: EE 231.

EE 261. Semiconductor Materials/Device. 3 Credits.
Energy band theory, effective mass, band structure and electronic properties of semiconductors. Transport of electrons and holes in bulk materials and across interfaces. MOSFETs, BJTs, pn junctions, and Schottky barriers. Prerequisite: EE 120 or Graduate Student standing.

EE 275. Digital Signal Processing. 3 Credits.
Sampling and reconstruction of signals. DFT, FFT and the z-transform. FIR and IIR filter design. Speech coding. Accompanying lab: EE 289. Pre/co-requisites: EE 171; Instructor permission.

EE 278. Wireless Communication. 3 Credits.
Modern wireless systems, including cellular design, propagation modeling, multiple access and equalization techniques. Pre/co-requisites: EE 174, STAT 151.

EE 279. Wireless Sensor Networks. 3 Credits.
Applications of and technologies behind wireless sensor networks. A systems-level perspective that integrates wireless networking, antennas, radio frequency circuitry, sensors, digital signal processing, embedded systems, and energy. Term project. Prerequisite: EE 171 or Instructor permission.

EE 301. System Theory. 3 Credits.

EE 302. Stochastic Processes. 3 Credits.
Probability theory, random variables and stochastic processes. Response of linear systems to random inputs. Applications in engineering. Prerequisites: EE 171 or ME 111; and STAT 151 or STAT 143.

EE 314. Nonlinear System Theory. 3 Credits.
Basic nonlinear methods including computational and geometrical techniques for analysis of nonlinear systems. Describing function methods and bifurcation and catastrophe theory. Sensitivity and stability considerations. Prerequisite: MATH 230 or MATH 271. Pre/Co-requisites: EE 301 recommended.

EE 371. Estimation Theory. 3 Credits.

EE 391. Master’s Thesis Research. 1-18 Credits.
EE 392. Master’s Project. 1-3 Credits.
Master’s Project.

EE 393. Graduate Seminar. 1 Credit.
Presentation and discussion of advanced problems, research, and current topics in Electrical Engineering by faculty, graduate students, and outside guest speakers.

EE 395. Advanced Special Topics. 1-18 Credits.
Advanced topics of current interest in electrical engineering. Prerequisite: Instructor permission.

EE 491. Doctoral Dissertation Research. 1-18 Credits.

EE 496. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.