MECHANICAL ENGINEERING (ME)

Courses

ME 001. First-Year Design Experience. 0 or 2 Credits.
Introduction to the engineering profession and design. Hands-on experiences that emphasize interdisciplinary teamwork, technical communications, and project design methodologies.

ME 003. Introduction to Robotics. 1 Credit.
Introduction to the fundamentals of mobile robotics and associated engineering concepts. Students build and program their own robots to execute specific tasks using sensor data acquisition and processing. The course culminates in a team robot competition.

ME 012. Dynamics. 3 Credits.
Kinematics and kinetics of particles and rigid bodies in two and three dimensions. Computer-aided analysis. Prerequisite: CE 001, MATH 121.

ME 014. Mechanics of Solids. 3 Credits.
Stress, strain, temperature relationships, torsion, bending stresses and deflections. Columns, joints, thin-walled cylinders. Combined stresses and Mohr's circle. Prerequisites: CE 001, MATH 021. Cross-listed with: CE 100.

ME 040. Thermodynamics. 3 Credits.
Principles of engineering thermodynamics; applications of these principles to thermodynamic cycles. Prerequisites: MATH 022, PHYS 031.

ME 042. SU: Applied Thermodynamics. 3 Credits.
Analysis of isentropic processes, gas, vapor and combined power cycles; refrigeration/heat pump cycles; relationships for ideal and real gases; gas mixtures and psychrometric applications. Prerequisite: ME 040.

ME 044. Heat Transfer. 1 Credit.

ME 081. Mech Engr Shop Experience. 0-1 Credits.
Introduction to the machine shop environment; shop safety; proper use of essential shop tools; machining techniques. Pre/co-requisite: Sophomore standing in Mechanical Engineering.

ME 083. Computational Mech Engr Lab. 1 Credit.
Introduction to finite element analysis, solid modeling, and stress-strain analysis with post-processing techniques. Prerequisite: CE 001. Co-requisite: ME 014 or CE 100.

ME 090. Internship. 1-3 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

ME 095. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles. One to three hours with Instructor approval.

ME 101. Materials Engineering. 3 Credits.
Atomic structure, crystalline structure, mechanical properties and testing of materials, phase equilibria, processing of metals, polymers, and ceramics. Prerequisite: ME 014.

ME 111. System Dynamics. 3 Credits.

ME 114. Intro Engineering Mechanics. 3 Credits.
Introduction to statics, dynamics, fluid mechanics, strength of materials, thermodynamics. Prerequisite: Junior standing in engineering or physical sciences.

ME 123. Thermo-Fluid Lab. 0 or 2 Credits.
Engineering measurements, data analysis and theory of experimentation. Experiments with fluids and material testing machines and instrumentation for dynamic measurements. Co-requisite: ME 143.

ME 124. Materials and Mechanics Lab. 0 or 2 Credits.

ME 143. Fluid Mechanics. 3 Credits.
Fluid pressure distributions; integral control volume systems; differential relations for a fluid particle; dimensional similarity; viscous flow in ducts; boundary layer flows; inviscid incompressible flows. Prerequisites: ME 012 and ME 040.

ME 144. Heat Transfer. 3 Credits.
One- and two-dimensional steady and unsteady thermal conduction; natural and forced internal and external convection; thermal radiation; heat exchangers; boiling and condensation heat transfer. Prerequisite: ME 143.

ME 150. The Engineering Profession. 3 Credits.
Professional practice of engineering. Laws, ethics, engineering economy, liability, insurance, and contracts. Prerequisite: Senior standing or Instructor permission.

ME 161. Modern Manufacturing Processes. 3 Credits.
Product development, product design, concurrent engineering, rapid prototyping, semiconductor manufacturing, metal and plastic products manufacturing, EDM, ECM, laser, ultrasonic and high energy forming methods, biotechnology. Prerequisite: Junior standing in Mechanical Engineering.

ME 162. Modern Manufacturing Systems. 3 Credits.
Overview of systems used in manufacturing and operations management methods, including: quality systems, material management, lean manufacturing, statistical process control, and sustainable operations. Prerequisites: Senior standing in Mechanical Engineering or Engineering Management.
ME 170. Mechanical Design I. 0 or 4 Credits.
Advanced mechanics of materials, stress strain, bending and torsion of slender members, energy methods, finite element modeling, and CAD topics including parametric and solid modeling. Prerequisite: ME 101.

ME 171. Design of Elements. 3 Credits.
Mechanical fatigue criteria, fatigue analysis and design of springs, bolted/welded joints, gearing, shafts, bearings, power transmission. Computer-aided design and analysis. Prerequisite: Junior standing; ME 014.

ME 172. Design of Systems. 3 Credits.
Design synthesis and optimization; probabilistic aspects in design; expert systems in design. Prerequisite: ME 171.

ME 174. Industrial Design Project. 1 Credit.
Design projects from industry. Prerequisite: ME 171.

ME 185. Capstone Design I. 3 Credits.
Design teams apply their knowledge and skills, mentored by faculty and/or industry partners, to design, analyze, build, and test novel devices, mathematical models, or processes that meet functional needs. Prerequisite: Senior standing.

ME 186. Capstone Design II. 0 or 3 Credits.
Design teams apply their knowledge and skills, mentored by faculty and/or industry partners, to design and build novel devices that meet functional needs. Prerequisite: ME 185.

ME 190. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

ME 191. Senior Thesis. 3 Credits.
Investigation of a research or design project under supervision of assigned staff member culminating in acceptable thesis. Prerequisite: Senior standing; department permission.

ME 192. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

ME 193. College Honors. 1-3 Credits.

ME 194. College Honors. 1-3 Credits.

ME 195. Intermediate Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles. Prerequisite: Senior standing in Civil or Mechanical Engineering.

ME 197. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory level course in the discipline, for which credit is awarded. Offered at department discretion.

ME 198. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

ME 199. Cooperative Ed Experience. 12 Credits.
On-site, full-time, supervised work experience that satisfies the educational objectives defined by the Department of Mechanical Engineering co-op program. Prerequisite: Sophomore standing.

ME 201. Biomaterials Engineering. 3 Credits.
A materials science and engineering approach is used to explore the structure-function relationships of natural and bio-inspired materials for various engineering applications. The emphasis is on mechanical design and function. The medical applications of biomaterials will be discussed. Prerequisite: ME 101.

ME 203. Machinery Analysis & Synthesis. 3 Credits.
Kinematic and kinetic analysis of two- and three-dimensional machines; kinematic synthesis; electromechanical and servo mechanisms; application to robotic mechanisms. Prerequisite: Senior standing in ME.

ME 207. Bioengineering. 3 Credits.
Introduction to bioengineering including biomechanics, rehabilitation, instrumentation, imaging, biomaterials, and transport. Pre/co-requisites: Senior/Graduate standing in Engineering; Instructor permission.

ME 208. Biomechanics: Tissue Engr. 3 Credits.
Solid biomechanics including structure, function and mechanical properties of biological tissues. Tissue engineering involving cell mechanics, scaffold materials, and signaling. Current literature topics are covered. Pre/co-requisites: Senior/Graduate standing in Engineering; Instructor permission.

ME 209. Biomechanics: Transport Proc. 3 Credits.
Transport and kinetic processes to vascular biology, respiratory mechanics and medicine. Steady and unsteady laminar flow, pulse wave reflections, curved and collapsible tube flow, turbulence. Pre/co-requisites: Senior/Graduate standing in Engineering; Instructor permission.

ME 210. Control Systems. 3 Credits.
Analysis and design of continuous and discrete-time control systems; stability, signal flow, performance criteria, classical and state variable methods, simulation design tools, computer-based realizations. Credit not given for more than one of the courses EE 110, ME 210. Prerequisites: EE 171 or ME 111. Cross-listed with: EE 210.

ME 213. Systems & Synthetic Biology. 3 Credits.
Applying engineering tools to the design and analysis of biomolecular processes; gene regulatory networks; nonlinear dynamics in molecular biology; biological circuit design; biological signal processing. Prerequisite: Background required: Differential Equations, Linear Algebra, Programming. Cross-listed with: CSYS 213, EE 213.
ME 218. Numerical Methods for Engineer. 3 Credits.
Foundational concepts of numerical integration, numerical differentiation, and numerical approximation and solution of differential and partial differential equations of the type encountered in the analysis of engineering problems and data processing. Prerequisites: MATH 271, CS 020; MATH 122 or MATH 124. Cross-listed with: CE 218.

ME 230. Astrodynamics. 3 Credits.
Motion of spacecraft in a central gravitational field. Two and restricted three-body problems; Kepler’s equation; orbital maneuvers and rendezvous; interplanetary and lunar trajectories. Prerequisite: ME 111.

ME 233. Vortex Flows. 3 Credits.
General theorems of vorticity transport in fluids; methods for solution of vortex flows; application to wake vortices, turbulent wall-layer vortices, wing-tip vortices, intake vortices, vortex-structure interaction, vortex reconnection, vortex breakdown, tornadoes and hurricanes. Prerequisite: ME 143.

ME 234. Mechanical Vibrations. 3 Credits.
Analysis, measurement, and control of mechanical vibrations; SDOF, MDOF, and rotating systems, forced, free, and random vibrations. Prerequisite: ME 111 or Senior/Graduate standing in engineering or physical sciences.

ME 235. Turbomach Vibration Anyl/Tstng. 2 Credits.
Vibration in rotating machines; vibration measurement techniques; machinery condition and degradation; condition monitoring and predictive maintenance; industrial vibration techniques including proximity probes, accelerometers, FFT analyzer. Prerequisite: ME 244.

ME 237. Turbulence. 3 Credits.
Description of turbulent flows; statistical and modeling of turbulent flows; Navier Stokes as a dynamical system; experimental and numerical approaches. Prerequisite: ME 143.

ME 238. Energy Systems Engineering. 3 Credits.
Engineering assessment of both potentially sustainable and unsustainable practical primary energy systems. Examination of options of meeting demand and impacts on the environment. Prerequisite: ME 042.

ME 239. Rocket Propulsion. 3 Credits.
Flight mechanics and propulsion requirements for atmospheric and space flight. Thermochemistry of fuels and propellants. Operating principles of chemical, electrical and nuclear propulsion systems. Pre/co-requisites: ME 143/ME 240 recommended or permission of the Instructor.

ME 240. Compressible Flow. 3 Credits.
Theory of compressible flow. Normal and oblique shocks; expansion waves; unsteady wave motion; method of characteristics; linearized external flows; conical and 3D flows. Prerequisite: ME 143 or equivalent.

ME 241. Combustion Processes. 3 Credits.
Combustion thermodynamics; chemical kinetics; laminar flames, premixed and diffusion; turbulent flames; ignition, explosion, and detonation; droplet combustion; flame spread; large scale fires; rocket combustion. Prerequisite: Senior/Graduate standing.

ME 242. Adv Engr Thermodynamics I. 3 Credits.
Foundations of statistical mechanics. Gases and crystals. Chemical equilibrium. Irreversible processes. Prerequisite: Senior/Graduate standing or permission.

ME 243. Incompressible Flow. 3 Credits.
Intermediate treatment of incompressible fluid flow; Navier-Stokes equations; two-dimensional potential flows; wing theory; vorticity and vortex structures; laminar and turbulent boundary layers. Prerequisites: ME 143 or equivalent.

ME 244. Intro to Turbomachinery Anyl. 2 Credits.
Fundamental turbomachinery principles of fluid mechanics, thermodynamics, and structural analysis; basic equations and computational techniques for analysis and design to model and evaluate turbomachinery. Prerequisite: ME 243, MATH 271.

ME 245. Advanced Heat Transfer I. 3 Credits.
Analytical methods for multidimensional steady and transient heat conduction; phase change and moving boundaries. Thermal radiation exchange in enclosures; view factors; emitting/absorbing gases. Prerequisites: ME 144 or equivalent, or by Instructor permission.

ME 246. Centrifugal Compressors. 2 Credits.
Fluid dynamic and thermodynamic principles of centrifugal compressor design and design practice; limits of stable operation and instability prediction and control. Prerequisite: ME 244.

ME 247. Centrifugal Pumps. 2 Credits.
Centrifugal pump design principles and practice; performance limits; cavitation; design tools and pump design optimization. Prerequisite: ME 244.

ME 248. Turbomachinery Special Topics. 1 or 2 Credit.
Content in axial fans_compressors; axial, radial, or steam turbines; CFD, dynamics/rotordynamics, or materials for turbo-machinery; power plant or refrigeration cycle developments; turbocharged and compound IC-engines. Prerequisite: ME 244.

ME 249. Computational Fluids Engr. 0 or 3 Credits.
Computational methods for solving the Navier-Stokes equations and combined thermo-fluid flows; finite-differences and finite-volume techniques; use of standard commercial CFD software. Prerequisite: ME 143 or equivalent.

ME 252. Mechanical Behavior Materials. 3 Credits.
Isotropic and anisotropic elasticity; theory of plasticity; deformation mechanisms in crystalline solids; dislocation theory; creep behavior; advanced fatigue and fracture mechanisms. Prerequisites: ME 101; Instructor permission.
ME 253. Corrosion of Materials. 3 Credits.

ME 255. Adv Engineering Materials. 3 Credits.
Advanced material processing; physical and mechanical principles of high-temperature alloys, light-weight materials, thin films, nanomaterials, and biomedical materials; elements of computational materials design. Prerequisites: Senior/Graduate standing; or Instructor permission.

ME 257. Composite Materials. 3 Credits.

ME 259. Computational Solid Mechanics. 3 Credits.
Computational methods using the finite element analysis (FEA) applied to linear elastic and non-linear problems in the mechanics of deformable solids and structures, contact mechanics, and fracture mechanics. Hands-on computational experience using a commercial FEA software. Prerequisites: ME 014, MATH 124, and MATH 271, or equivalent.

ME 265. Integrated Product Developmnt. 3 Credits.
Project-based course focusing on the entire product life cycle. Team dynamics, process and product design, quality, materials, management, and environmentally-conscious manufacturing. Prerequisite: Senior standing. Cross-listed with: BSAD 293.

ME 270. Structural Dynamics. 3 Credits.
Vibrations, matrices, earthquake engineering, stability and wave propagation. Prerequisites: Senior/Graduate standing in Engineering or physical sciences, or Instructor permission. Cross-listed with: CE 272.

ME 271. Micro and Nano Systems. 3 Credits.
Operating principles, fabrication and design of engineered systems with submillimeter dimensions. Prerequisites: Senior/Graduate standing in Engineering or physical sciences.

ME 281. Seminar. 1 Credit.
Presentation and discussion of advanced mechanical engineering problems and current developments. Prerequisite: Senior/Graduate engineering enrollment.

ME 282. Seminar. 1 Credit.
Presentation and discussion of advanced mechanical engineering problems and current developments. Prerequisite: Senior/Graduate engineering enrollment.

ME 283. Lab Techniques Turbomach Dev. 2 Credits.
Instruments and transducers for performance, flow, and structural measurements in turbo-machinery; the role of test data in design and development; experimental data acquisition and processing. Prerequisite: ME 244.

ME 285. Biomedical Engineering Seminar. 1 Credit.
Presentation and discussion of advanced biomedical engineering problems and current research developments. Prerequisite: Senior/Graduate engineering enrollment.

ME 290. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

ME 292. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

ME 295. Advanced Special Topics. 1-18 Credits.
Content is dictated by expanding professional interest in newly developing, or recently developed, technical areas in which there is particular need or opportunity. Prerequisite: Senior/Graduate standing.

ME 297. Teaching Assistantship. 1-3 Credits.
Undergraduate student service as a teaching assistant, usually in an introductory level course in the discipline, for which credit is awarded. Offered at department discretion.

ME 298. Undergraduate Research. 1-18 Credits.
Undergraduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

ME 299. Cooperative Ed Experience. 12 Credits.
On-site, full-time, supervised work experience that satisfies the educational objectives defined by the Department of Mechanical Engineering co-op program. Prerequisite: Senior standing.