THE UNIVERSITY OF VERMONT
COMPLEX SYSTEMS AND DATA SCIENCE

https://www.uvm.edu/cems

OVERVIEW

The College of Engineering and Mathematical Sciences provides an educational program in Complex Systems and Data Science (CSDS) that includes education offerings at three levels:

1. A five course Graduate Certificate in Complex Systems that may be taken by any graduate student at UVM to augment their degree.
2. An MS in CSDS which is a two-year degree with optional disciplinary tracks, and which UVM undergraduates may initiate through an Accelerated Master’s Program.
3. A PhD in CSDS which will allow students to fully develop a deep portfolio of published research, thereby opening the door to high level research positions in, for example, government, industry, or academia.

The educational program naturally complements UVM’s undergraduate degree in Data Science but also thematically connects with many fields across the university.

The program’s overall goal is to help students become protean data scientists with eminently transferable skills. Students are provided with a broad training in computational and theoretical techniques for (1) describing and understanding complex natural and sociotechnical systems, enabling them to then, as possible, (2) predict, control, manage, and create such systems. Students will be trained in: Industry standard methods of data acquisition, storage, manipulation, and curation; visualization techniques, with a focus on building high quality web-based applications; finding complex patterns and correlations through, for example, machine learning and data mining; powerful ways of hypothesizing, searching for, and extracting explanatory, mechanistic stories underlying complex systems—not just how to use black box techniques; combining the formulation of mechanistic models (e.g., toy physics models) with genetic programming.

DEGREES

Complex Systems and Data Science AMP

Complex Systems and Data Science CGS

Complex Systems and Data Science M.S.

Complex Systems and Data Science Ph.D.

FACULTY

Bagrow, James; Assistant Professor, Department of Mathematics and Statistics; PHD, Clarkson University

Bongard, Joshua C.; Professor, Department of Computer Science; PHD, University of Zurich

Buzas, Jeff Sandor; Professor, Department of Mathematics and Statistics; PHD, North Carolina State University Raleigh

Danforth, Chris; Associate Professor, Department of Mathematics and Statistics; PHD, University of Maryland College Park

Dodds, Peter Sheridan; Professor, Department of Mathematics and Statistics; PHD, Massachusetts Institute of Technology

Eppstein, Margaret Jean; Professor Emerita, Department of Computer Science; PHD, University of Vermont

Hébert-Dufresne, Laurent; Assistant Professor, Department of Computer Science; PHD, Université Laval, Québec, Canada

Wshah, Safwan; Assistant Professor, Department of Computer Science; PHD, State University of New York at Buffalo

Courses

CSYS 213. Systems & Synthetic Biology. 3 Credits.
Applying engineering tools to the design and analysis of biomolecular processes, gene regulatory networks, nonlinear dynamics in molecular biology, biological circuit design, biological signal processing. Prerequisite: Background required: Differential Equations, Linear Algebra, Programming. Cross-listed with: ME 213, EE 213.

CSYS 221. QR: Deterministic Modls Oper Rsch. 3 Credits.
The linear programming problem. Simplex algorithm, dual problem, sensitivity analysis, goal programming. Dynamic programming and network problems. Prerequisites: MATH 122 or MATH 124; MATH 121 recommended. Cross-listed with: MATH 221.

CSYS 226. Civil Engineering Systems Anal. 3 Credits.
Linear programming, dynamic programming, network analysis, simulation; applications to scheduling, resource allocation routing, and a variety of civil engineering problems. Pre/co-requisites: Minimum Senior standing in CEE or Instructor permission. Cross-listed with: CE 226.

CSYS 245. Intelligent Transportation Sys. 3 Credits.
Introduction to Intelligent Transportation Systems (ITS), ITS user services, ITS applications, the National ITS architecture, ITS evaluation, and ITS standards. Pre/co-requisites: CE 140 or equivalent; Instructor permission. Cross-listed with: CE 245.

CSYS 251. QR: Artificial Intell. 3 Credits.
Introduction to methods for realizing intelligent behavior in computers. Knowledge representation, planning, and learning. Selected applications such as natural language understanding and vision. Prerequisites: CS 103 or CS 123; CS 104 or CS 124; STAT 153 or equivalent. Cross-listed with: CS 251.

CSYS 253. QR: Apl Time Series&Forecasting. 3 Credits.
Autoregressive moving average (Box-Jenkins) models, autocorrelation, partial correlation, differencing for nonstationarity, computer modeling. Forecasting, seasonal or cyclic variation, transfer function and intervention analysis, spectral analysis. Prerequisites: CE 211 or CE 225; or CE 141 or CE 143 with Instructor permission. Cross-listed with: STAT 253.
CSYS 256. QR: Neural Computation. 3 Credits.
Introduction to artificial neural networks, their computational capabilities and limitations, and the algorithms used to train them. Statistical capacity, convergence theorems, backpropagation, reinforcement learning, generalization. Prerequisites: MATH 122 or MATH 124 or MATH 271; STAT 143 or STAT 153 or equivalent; CS 110. Cross-listed with: STAT 256, CS 256.

CSYS 266. QR: Chaos, Fractals & Dynamical Systems. 3 Credits.
Discrete and continuous dynamical systems, Julia sets, the Mandelbrot set, period doubling, renormalization, Henon map, phase plane analysis, and Lorenz equations. Prerequisite: MATH 122 or MATH 124. CS 020 or CS 021 recommended. Cross-listed with: MATH 266.

CSYS 268. QR: Mathematical Biology & Ecology. 3 Credits.
Mathematical modeling in the life sciences. Topics include population modeling, dynamics of infectious diseases, reaction kinetics, wave phenomena in biology, and biological pattern formation. Prerequisite: MATH 122 or MATH 124 or MATH 230 or Instructor permission. Cross-listed with: MATH 268.

CSYS 300. Principles of Complex Systems. 3 Credits.
Introduction to fundamental concepts of complex systems. Topics include: emergence, scaling phenomena and mechanisms, multi-scale systems, failure, robustness, collective social phenomena, complex networks. Students from all disciplines welcomed. Pre/co-requisites: calculus and statistics required; Linear algebra, differential equations, and computer programming recommended but not required. Cross-listed with: MATH 300.

CSYS 302. Modeling Complex Systems. 3 Credits.

CSYS 303. Complex Networks. 3 Credits.
Detailed exploration of distribution, transportation, small-world, scale-free, social, biological, organizational networks; generative mechanisms; measurement and statistics of network properties; network dynamics; contagion processes. Students from all disciplines welcomed. Pre/co-requisites: MATH 301/CSYS 301, calculus, and statistics required. Cross-listed with: MATH 303.

CSYS 312. Adv Bioengineering Systems. 3 Credits.
Advanced bioengineering design and analysis for current biomedical problems spanning molecular, cell, tissue, organ, and whole body systems including their interactions and emergent behaviors. Cross-listed with: ME 312.

CSYS 350. Multiscale Modeling. 3 Credits.

CSYS 352. Evolutionary Computation. 3 Credits.

CSYS 355. Statistical Pattern Recognition. 3 Credits.
Analysis of algorithms used for feature selection, density estimation, and pattern classification, including Bayes classifiers, maximum likelihood, nearest neighbors, kernels, discriminants, neural networks, and clustering. Prerequisite: STAT 241 or STAT 251 or Instructor permission. Cross-listed with: STAT 355, CS 355.

CSYS 359. Applied Artificial Neural Networks. 1-3 Credits.
Introduction to artificial neural networks. A broad range of example algorithms are implemented in MATLAB. Research applications to real data are emphasized. Pre/co-requisites: STAT 223, CS 016/CE 011, or Instructor permission. Cross-listed with: CE 359.

CSYS 369. Applied Geostatistics. 3 Credits.
Introduction to the theory of regionalized variables, geostatistics (kriging techniques): special topics in multivariate analysis; Applications to real data subject to spatial variation are emphasized. Pre/co-requisites: STAT Prerequisites: STAT 223 or STAT 225; CS 020 or CS 021; or Instructor permission. Cross-listed with: CE 369, STAT 369.

Masters thesis research under the supervision of a graduate faculty member. Prerequisite: Instructor permission.

CSYS 392. Masters Project. 1-6 Credits.
Masters Project under the supervision of a graduate faculty member. Prerequisite: Instructor permission.

CSYS 395. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

CSYS 491. Doctoral Dissertation Research. 1-18 Credits.
See Schedule of Courses for specific titles.

CSYS 496. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.