CIVIL AND ENVIRONMENTAL ENGINEERING

http://www.uvm.edu/~cems/soe/

OVERVIEW

Graduate programs in Civil and Environmental Engineering (CEE) that lead to the master of science and doctor of philosophy degrees are offered. The curricular and research programs emphasize engineering related to environmental and hydrological processes, sustainable transportation systems, materials, and geotechnical, geoenvironmental and structural engineering.

Research in the department addresses critical issues facing the world related to sustainability and energy; infrastructure systems; climate change, hazard mitigation and adaptation; and environmental and public health. A wide range of research methods are employed from state-of-the-art laboratory and field testing to sensing to computational modeling to artificial intelligence. Example projects include groundwater contamination modeling and remediation, environmental restoration and ecological engineering, hydrological processes, air pollution related health effects, sustainable materials, soil and structural dynamics, geo-energy, and sustainable transportation systems.

CEE graduate students can concurrently pursue certificates of graduate study in Complex Systems, Ecological Economics, and Community Resilience & Planning, among others.

DEGREES

- Civil and Environmental Engineering AMP (http://catalogue.uvm.edu/graduate/civilenvironmentalengineering/civilandenvironmentalengineeringamp/)
- Civil and Environmental Engineering M.S. (http://catalogue.uvm.edu/graduate/civilenvironmentalengineering/civilandenvironmentalengineeringms/)
- Civil and Environmental Engineering Ph.D. (http://catalogue.uvm.edu/graduate/civilenvironmentalengineering/civilandenvironmentalengineeringphd/)

FACULTY

Aultman-Hall, Lisa M.; Professor, Department of Civil and Environmental Engineering; PhD, McMaster University
Badireddy, Appala Raju; Assistant Professor, Department of Civil and Environmental Engineering; PhD, University of Houston
Bombles, Arne; Associate Professor, Department of Civil and Environmental Engineering; PhD, Massachusetts Institute of Technology
Dewoolkar, Mandar M; Professor, Department of Civil and Environmental Engineering; PhD, University of Colorado Boulder
Garcia, Luis; Professor, Department of Civil and Environmental Engineering; PhD, University of Colorado Boulder
Ghazanfari, Ehsan; Associate Professor, Department of Civil and Environmental Engineering; PhD, Lehigh University
Hamshaw, Scott; Research Assistant Professor, Department of Civil and Environmental Engineering; Ph.D, University of Vermont
Hernandez, Eric M.; Associate Professor, Department of Civil and Environmental Engineering; PhD, Northeastern University
Holmén, Britt A.; Professor Emerita, Department of Civil and Environmental Engineering; PhD, Northeastern University
Hernandez, Eric M.; Associate Professor, Department of Civil and Environmental Engineering; PhD, University of Illinois Urbana-Champaign
Rizzo, Donna Marie; Professor, Department of Civil and Environmental Engineering; PhD, University of Vermont
Rowangould, Dana; Research Assistant Professor, Department of Civil and Environmental Engineering; PhD, University of Vermont
Underwood, Kristen L.; Research Assistant Professor, Department of Civil and Environmental Engineering; PhD, University of Wisconsin-Madison
Tan, Ting; Associate Professor, Department of Civil and Environmental Engineering; PhD, Princeton University

Courses

CE 201. Sustainable Eng Materials. 3 Credits.
Introduces the fundamentals of materials with a focus on sustainable engineering, including structure and bond, interatomic potential, metals, fracture, strength testing, cement chemistry, aggregates, composites, reinforced concrete, asphalt, bamboo and wood. Prerequisite: CE 100, ME 014, or Instructor permission.

CE 218. Numerical Methods for Engineer. 3 Credits.
Foundational concepts of numerical integration, numerical differentiation, and numerical approximation and solution of differential and partial differential equations of the type encountered in the analysis of engineering problems and data processing; project-based. Prerequisites: MATH 271, CS 020; MATH 122 or MATH 124. Cross-listed with: ME 218.

CE 241. Traffic Operations & Design. 3 Credits.
Advanced concepts of traffic engineering and safety; human, vehicle and environment factors; simulation and statistical analysis software; transportation design manuals; project-based. Prerequisite: CE 133.

CE 243. Transportation Demand Models. 3 Credits.
Study of specific methods used to analyze travel demand, travel behavior and network flows; process of travel demand modeling; collection, analysis and expansion of survey data and travel data; mathematical methods common to travel modeling. Prerequisite: CE 133.
CE 247. Sustain Resource Recovery Dsgn. 3 Credits.
Environmental engineering strategies to create circular economies emphasizing the role of wastes as resources. Course topics include life cycle assessment, carbon and nutrient management, materials recycling, and waste-to-energy processes. Project-based. Prerequisite: CE 151.

CE 253. Transportation & Air Quality. 3 Credits.
Air pollution sources, measurement methods, legislation, vehicle emissions formation, control and transport processes. Emphasis on emission factor and dispersion multi-scale modeling using latest modeling tools. Project-based. Prerequisites: CE 132, CE 133.

CE 254. Environmental Quantitative Anyl. 0 or 4 Credits.
Focuses on chemical, biochemical and physical processes; diffusion, equilibria, reaction kinetics, acids/bases, colloids, air/water exchange; laboratories demonstrate standard environmental engineering techniques; project-based. Prerequisites: CHEM 032, CE 132, STAT 141 or STAT 143. C- or better in CE 132.

CE 255. Phys/Chem Proc Water/Wstwater. 0 or 3 Credits.
Theory of physical/chemical processes for treating waters and wastewaters; reactor dynamics, mass transfer, adsorption, ion exchange, precipitation; project-based. Prerequisite: CE 151.

CE 256. Biol Proc Water/Wastewater Tr. 0 or 3 Credits.
Theory and application of biological processes for treating industrial and domestic wastewaters and contaminated ground water; microbiological considerations; aerobic and anaerobic processes; reactor design, in-situ bioremediation; bench-scale and pilot-scale experimentation. Prerequisite: CE 151.

CE 260. Hydrology. 3 Credits.
Theory of precipitation, run-off, infiltration, and ground water; precipitation and run-off data; and application of data for use in development of water resources. Pre/Cr-requisite: CE 160.

CE 262. Advanced Hydrology. 3 Credits.
Introduces computer modeling of hydrological systems. Project-based. Simple overland flow, flood routing, water quality, and groundwater models are developed using finite difference techniques. Stochastic hydrology and hydrologic time series analysis are also introduced. Prerequisite: CE 260.

CE 265. Ground Water Hydrology. 3 Credits.
Principles of ground water hydraulics, well characteristics, aquifers, and use of numerical methods to solve ground water flow problems. Project-based. Prerequisite: CE 160.

CE 266. Climate Change Impacts. 3 Credits.
Introduces the physical basis of climate change and explores a number of climate change impacts, particularly those that affect the built environment; primary focus on hydro-climate impacts, specifically flood risk, water resources, coastal flooding, and stormwater infrastructure; various modeling techniques are introduced and applied to engineering problems. Prerequisites: CS 020 or CS 021; CE 260.

CE 271. Advanced Structural Analysis. 3 Credits.
Virtual work, energy theorems, analysis of structures by the displacement method and the finite element method, non-linear structural analysis. Project-based. Prerequisite: CE 170.

CE 272. Structural Dynamics. 3 Credits.
Vibrations, matrices, earthquake engineering, stability and wave propagation. Project-based. Prerequisites: Senior standing in Engineering or Physical Sciences or Instructor permission. Cross-listed with: ME 270.

CE 273. Structural Design - Wood. 3 Credits.
Analysis and design of solid and glue laminated timber members and structural systems including tension members, beams, columns, beam-columns, diaphragms, shear walls, and connections; LRFD and ASD design methods; application of IBC for timber systems; current developments in wood design/construction; project-based. Prerequisite: CE 170.

CE 281. Geotechnical Design. 3 Credits.
Bearing capacity, lateral earth pressures, slope stability; analysis and design of shallow and deep foundations, retaining structures, and slopes; project-based. Prerequisite: CE 180.

CE 285. Geo-energy Systems. 3 Credits.
An introduction to Geoenergy technologies for subsurface energy extraction (shallow and deep geothermal systems, enhanced oil recovery, shale gas extraction) and secure storage of byproducts of energy production (carbon dioxide and nuclear wastes); project-based. Prerequisite: CE 180.

CE 286. Foundation Design. 3 Credits.
Subsurface explorations; geotechnical analysis, design, construction, preservation, remediation, and monitoring aspects of shallow and deep foundations. Prerequisite: CE 180.

CE 359. Appld Artificial Neural Ntwrks. 1-3 Credits.
Introduction to artificial neural networks. A broad range of example algorithms are implemented in MATLAB. Research applications to real data are emphasized. Prerequisites: CS 021, STAT 223 or equivalent. Cross-listed with: CSYS 359.

CE 369. Applied Geostatistics. 3 Credits.
Introduction to the theory of regionalized variables, geostatistics (kriging techniques); special topics in multivariate analysis; Applications to real data subject to spatial variation are emphasized. Prerequisites: STAT 223; CS 020 or CS 021; or Instructor permission. Cross-listed with: CSYS 369, STAT 369.

CE 370. Uncertainty & Risk in Eng Sys. 3 Credits.
Modeling uncertainty and risk, random variables, modeling and simulation of functions of random variables and random processes, propagation of uncertainties in computational models, analytical and computational methods for computing failure probability of engineering systems, Bayesian updating of risk measures, communicating uncertainty and risk. Prerequisite: STAT 151 or equivalent.
CE 391. Master’s Thesis Research. 1-12 Credits.

CE 392. Master’s Project. 1-6 Credits.
Independent project related to civil and environmental engineering under the supervision of a Civil & Environmental Engineering faculty member, concluding with a written technical report and an oral presentation to a committee of two Civil & Environmental Engineering faculty members. Prerequisite: Permission of Civil & Environmental Engineering Graduate Coordinator or Civil & Environmental Engineering Department Chair.

CE 393. CEE Graduate Seminar. 0 Credits.
Presentation and discussion of advanced problems, research, and current topics in Civil & Environmental Engineering by faculty, graduate students, and outside guest speakers. Prerequisite: Graduate student in Civil & Environmental Engineering.

CE 394. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

CE 395. Advanced Special Topics. 1-18 Credits.
Advanced topics in recently developed technical areas. Hours and credits as arranged.

CE 398. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

CE 399. Independent Graduate Research. 1-18 Credits.
Graduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

CE 490. Internship. 1-18 Credits.
On-site supervised work experience combined with a structured academic learning plan directed by a faculty member or a faculty-staff team in which a faculty member is the instructor of record, for which academic credit is awarded. Offered at department discretion.

CE 491. Doctoral Dissertation Research. 1-18 Credits.

CE 493. Independent Graduate Research. 1-18 Credits.
Graduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

CE 496. Advanced Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.