BIOMEDICAL ENGINEERING (BME)

Courses

BME 5150. Nanobiomaterials. 3 Credits.
Covers the classes of nanomaterials used biomedically, the biological response, and material testing. Content includes applications of nanomaterials in drug delivery, nano-topography of surfaces, sensors, and imaging as well as the topic of nanotoxicity.

BME 5330. Advanced Biomedical Systems. 3 Credits.
Uses the study of lung mechanics as a vehicle for teaching a range of mathematical modeling and data analysis methods central to the study of physiological systems. Students will gain a detailed understanding of how the lung works as a mechanical system and various diseases that affect mechanical function. At the same time, they will learn about applications of a range of mathematical and signal processing techniques. Prerequisite: Graduate standing or Instructor permission.

BME 5440. Biothermodynamics. 3 Credits.
Inter-disciplinary; guides the student through the thermodynamics of living organisms, comprised of the study of energy transformation in the life sciences. Designed for students from the STEM disciplines. Covers Gibbs free energy, statistical thermodynamics, binding equilibria, and reaction kinetics. Prerequisites: Successful completion of Materials and Mechanics Lab such as ME 2111, Thermo-Fluid Labs such as ME 2321, or Biomedical design such as BME 3600 is assumed; Graduate student or Instructor permission. Cross-listed with: ME 5440.

BME 5800. Clinical Devices & Instruments. 3 Credits.
Focuses on the development, design and adaptation of biomedical devices and instruments in exciting active areas of biomedical device development and applications at UVM and the UVM Medical Center (UVMMC). Includes lectures on commercialization and manufacturing. Team-taught by faculty in the Larner College of Medicine and the UVMMC. Prerequisites: Biomedical Engineering Graduate student or Instructor permission; Content knowledge in ANPS 1190, ANPS 1200, BME 2000, and BME 2050 is assumed.

BME 5990. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 5993. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 6391. Master's Thesis Research. 1-18 Credits.
Presentation and discussion of advanced problems, research, and current topics in Electrical Engineering by faculty, Graduate students, and outside guest speakers.

BME 6990. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 6993. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 6995. Graduate Independent Research. 1-18 Credits.
Graduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 7491. Doctoral Dissertation Research. 1-18 Credits.
Research for the Doctoral Dissertation.

BME 7990. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

BME 7993. Independent Study. 1-18 Credits.
A course which is tailored to fit the interests of a specific student, which occurs outside the traditional classroom/laboratory setting under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 7995. Graduate Independent Research. 1-18 Credits.
Graduate student work on individual or small team research projects under the supervision of a faculty member, for which credit is awarded. Offered at department discretion.

BME 6930. Graduate Seminar. 1 Credit.
Includes writing Python software to analyze data from the human brain and decode it to develop brain-computer interfaces (BCIs) that can predict a person’s response/intent from brain activity alone. Includes work with real examples of neural data, particularly non-invasive electroencephalography (EEG) recordings. Discusses the design and ethics of real-world BCIs. Prerequisites: At least 2 semesters of coding, at least 1 of these semesters in Python or Matlab.