STATISTICS

https://www.uvm.edu/cems/mathstat

OVERVIEW

The Statistics Program offers biostatistics, statistics, data science and probability courses for the entire university community along with traditional degree programs and individually designed degree programs emphasizing statistics applied to other fields. The degree programs are designed primarily for students who plan careers in data science, business, actuarial science, industry, and government or advanced training in disciplines that make extensive use of statistical methods and data science. The program faculty is deeply involved in consulting and collaborative research in a wide variety of fields, including industry, agriculture, and in the basic and clinical medical sciences. These research activities along with the research of other quantitative UVM faculty offer students unique opportunities to apply their classroom training to "real world" problems. Qualified students with the goal of learning statistics to use in a specialized area of application are especially encouraged to take advantage of these cooperative arrangements.

Program faculty have active statistics research efforts in areas such as bioinformatics, statistical genetics, Bayesian models, survival data analysis, discriminant analysis, bootstrap methods, machine learning, predictive modeling, networks, categorical data analysis, measurement error models, and experimental design. Students seeking the traditional graduate degree in statistics (along with course work in mathematics and computer science, if desired) have excellent opportunities to participate in the faculty's research.

DEGREES

Statistics AMP

Statistics M.S.

FACULTY

Bagrow, James; Associate Professor, Department of Mathematics and Statistics; PHD, Clarkson University
Buzas, Jeff Sándor; Professor, Department of Mathematics and Statistics; PHD, North Carolina State University Raleigh
Chaudhuri, Paramita Saha; Assistant Professor, Department of Mathematics and Statistics; PHD, University of Washington
Cole, Bernard; Professor, Department of Mathematics and Statistics; PHD, Boston University
Jefferys, William; Adjunct Professor, Department of Mathematics and Statistics; PHD, Yale University
Patania, Alice; Research Assistant Professor, Department of Mathematics and Statistics; PHD, Politecnico di Torino
Single, Richard M.; Associate Professor, Department of Mathematics and Statistics; PHD, SUNY Stony Brook
Young, Jean-Gabriel; Research Assistant Professor, Department of Computer Science, PHD, Université Laval

Courses

STAT 5000. Biostatistics and Epidemiology. 3 Credits.
Introductory design and analysis of medical studies. Epidemiological concepts, case-control and cohort studies. Clinical trials. Students evaluate statistical aspects of published health science studies. Understand the relevance of published public health research to clinical practice. Prerequisite: Graduate student or Instructor permission.

STAT 5010. Gr Applied Data Analysis. 3 Credits.
Fundamental data processing, code development, graphing and analysis using statistical software packages. Analysis of data and interpretation of results. Project-based. Prerequisites: Graduate student or Instructor permission; content knowledge of STAT 1410, STAT 2430, or STAT 3210 assumed.

STAT 5210. Advanced Stat Methods & Theory. 3 Credits.
Parametric and non-parametric two-sample tests. Multiple regression and correlation. Matrix representations. Basic experimental design. Analysis of variance (fixed, random, and mixed models). Statistical Software usage. Prerequisites: Graduate student or Instructor permission; content knowledge of STAT 2830 assumed.

STAT 5230. Applied Multivariate Analysis. 3 Credits.
Multivariate normal distribution. Inference for mean vectors and covariance matrices. Multivariate analysis of variance (MANOVA), discrimination and classification, principal components, factor and cluster analysis. Prerequisite: STAT 3210, matrix algebra recommended.

STAT 5290. Survival/Logistic Regression. 3 Credits.
Models and inference for time-to-event and binary data. Censored data, life tables, Kaplan-Meier estimation, logrank tests, proportional hazards models. Logistic regression-interpretation, assessment, model building, special topics. Prerequisite: Graduate student or Instructor permission; content knowledge of STAT 3210 or STAT 5210 assumed.

STAT 5310. Experimental Design. 3 Credits.
Randomization, complete and incomplete blocks, cross-overs, Latin squares, covariance analysis, factorial experiments, confounding, fractional factorials, nesting, split plots, repeated measures, mixed models, response surface optimization. Prerequisites: Graduate student or Instructor permission; content knowledge of STAT 3210 or STAT 5210 assumed; content knowledge of STAT 5010 recommended.

STAT 5350. Categorical Data Analysis. 3 Credits.
Measures of association and inference for categorical and ordinal data in multiway contingency tables. Log linear and logistic regression models. Prerequisite: Graduate student or Instructor permission; content knowledge of STAT 3210 or STAT 5210 assumed.
STAT 5510. Probability Theory. 3 Credits.
Distributions of random variables and functions of random variables. Expectations, stochastic independence, sampling and limiting distributions (central limit theorems). Concepts of random number generation. Prerequisites: Graduate student or Instructor permission; content knowledge of MATH 2248, STAT 2510 assumed.

STAT 5530. Appl Time Series & Forecasting. 3 Credits.
Autoregressive moving average (Box-Jenkins) models, autocorrelation, partial correlation, differencing for nonstationarity, computer modeling. Forecasting, seasonal or cyclic variation, transfer function and intervention analysis, spectral analysis.

STAT 5560. Statistical Theory. 3 Credits.
Point and interval estimation, hypothesis testing, and decision theory. Application of general statistical principles to areas such as nonparametric tests, sequential analysis, and linear models. Prerequisite: STAT 5510.

STAT 5570. Data Science I - Experience. 3 Credits.
Data harvesting, cleaning, and summarizing; working with non-traditional, non-numeric data (social network, natural language textual data, etc.); scientific visualization; advanced data pipelines with a practical focus on real datasets and developing good habits for rigorous and reproducible computational science; Project-based. Prerequisites: Graduate student; Instructor permission; knowledge of CS 1210 and either STAT 1410 or STAT 2430 assumed; knowledge of CS 2100 and MATH 2522 or MATH 2544 strongly recommended. Cross-listed with: CSYS 5870, CS 5870.

STAT 5590. Special Topics. 1-18 Credits.
See Schedule of Courses for specific titles.

STAT 6300. Bayesian Statistics. 3 Credits.

STAT 6391. Master’s Thesis Research. 1-6 Credits.
Research for the Master’s Thesis.

STAT 6600. Linear Models. 3 Credits.
Theory of linear models, least squares and maximum likelihood estimation, fixed, random and mixed models, variance component estimation, introduction to generalized linear models, bootstrapping. Prerequisite: Content knowledge of MATH 2522 or MATH 2544 assumed.

STAT 6810. Statistical Research. 1-3 Credits.
Methodologic or data analytic research culminating in oral and written reports to the faculty. Prerequisite: Instructor permission.

STAT 6850. Consulting Practicum. 1-3 Credits.
Supervised field work in statistical consulting. Experiences may include advising UVM faculty and students or clients in applied settings such as industry and government agencies. Prerequisites: Second year Graduate student in Statistics or Biostatistics; permission of Statistics Program Director.